NAME
X25519
,
X25519_keypair
—
Elliptic Curve Diffie-Hellman primitive
based on Curve25519
SYNOPSIS
#include
<openssl/curve25519.h>
int
X25519
(uint8_t
out_shared_key[X25519_KEY_LENGTH], const uint8_t
private_key[X25519_KEY_LENGTH], const uint8_t
peer_public_value[X25519_KEY_LENGTH]);
void
X25519_keypair
(uint8_t
out_public_value[X25519_KEY_LENGTH], uint8_t
out_private_key[X25519_KEY_LENGTH]);
DESCRIPTION
Curve25519 is an elliptic curve over a prime field specified in RFC 7748. The prime field is defined by the prime number 2^255 - 19.X25519
()
is the Diffie-Hellman primitive built from Curve25519 as described in RFC
7748 section 5. Section 6.1 describes the intended use in an Elliptic Curve
Diffie-Hellman (ECDH) protocol.
X25519
()
writes a shared key to out_shared_key that is
calculated from the given private_key and the
peer_public_value by scalar multiplication. Do not use
the shared key directly, rather use a key derivation function and also
include the two public values as inputs.
X25519_keypair
()
sets out_public_value and
out_private_key to a freshly generated public/private
key pair. First, the out_private_key is generated with
arc4random_buf(3). Then, the opposite of the masking described in RFC
7748 section 5 is applied to it to make sure that the generated private key
is never correctly masked. The purpose is to cause incorrect implementations
on the peer side to consistently fail. Correct implementations will decode
the key correctly even when it is not correctly masked. Finally, the
out_public_value is calculated from the
out_private_key by multiplying it with the Montgomery
base point uint8_t u[32] =
{9}.
The size of a public and private key is
X25519_KEY_LENGTH
= 32 bytes
each.
RETURN VALUES
X25519
() returns 1 on success or 0 on
error. Failure can occur when the input is a point of small order.
SEE ALSO
D. J. Bernstein, A state-of-the-art Diffie-Hellman function: How do I use Curve25519 in my own software?, http://cr.yp.to/ecdh.html.
STANDARDS
RFC 7748: Elliptic Curves for Security